0968-0896(94)00104-9

Stereocontrolled Synthesis of C-Glycosides: Further Studies on the Organolithium Reagents Derived from 2-Deoxy-D-Glucose and D-Glucose

Patrick Lesimple and Jean-Marie Beau*

Université d'Orléans, Laboratoire de Biochimie Structurale associé au CNRS, B.P. 6759, 45067 Orléans Cedex 2, France

Abstract—The addition of α - and β -2-deoxy-D-glucopyranosyl lithium reagents 1 and 11 to prochiral aldehydes is a syn-selective process, synthetically useful only with the α -lithio reagent 1 (syn:anti selectivity of \sim 10:1 with saturated aldehydes). This has been demonstrated by using propional ehyde and converting the syn-isomers of both series to an easily identified acyclic mesochain (α -series) or a C_2 symmetric acyclic chain (β -series). The preparation of α - and β -D-glucopyranosyl dilithio reagents 26 and 27 is possible but a notable decrease in efficiency and facial selectivity is observed in coupling reactions with model aldehydes.

Introduction

The importance of C-glycosides, not only as structural subunits of a variety of natural products but as mimics of biologically relevant O-glycosides, has stimulated the discovery of a wide-range of synthetic methods for their construction. Targeting the assembly of O-glycoside mimics as possible glycoenzyme regulators or more generally as artificial ligands usable in biological recognition studies is now a growing concern for potential use in medicinal chemistry.

All possible synthetic strategies including anomeric carbocations, carbanions, radicals and carbenes have been intensively exploited over the past decade¹ to realize the direct formation of a carbon-carbon bond at the anomeric center of carbohydrates.

For the preparation of C-glycopyranosyl compounds, we have shown that a stereodefined umpolung at the anomeric center is possible via the stereoselective construction of the corresponding α and β anomeric stannanes, a strategy limited to the 2-deoxy series⁴

(Scheme I). The transmetallation of the isomeric stannanes led to the organolithium reagents i and ii configurationally stable^{4,5} at low temperature which reacted with electrophiles with retention of the configuration. The seemingly unnecessary route to lithium reagent i via anomeric stannane 2 instead of directly using the reductive lithiation product of chloride 16 was justified because of the higher coupling efficiencies obtained with carbonyl compounds using this protocol and because of the possibility of modifying i for its condensation with α,β -unsaturated ketones⁷ or epoxides.⁸ Addition of these lithium reagents to prochiral carbonyl compounds provided varying degrees of diastereofacial selectivity which was left undefined in the previous study.4 The absolute configuration of the exocyclic asymmetric center produced in the coupling reactions has now been established and we present an extension of this work to the gluco series. The extrafunctionality at C-7 can be considered a useful means of producing restricted (see A) or fixed (see B and C) 'exoanomeric conformations' expected to influence biological activity (see the following scheme).

Scheme I. *This representation denotes that the conformation of i is presently unknown. For the sake of convenience, the α -C-glycosides reported are drawn in the ${}^4C_1(D)$ chair conformation. However, a substantial conformational distortion from the chair was observed for most of them.

Results and Discussion

Facial enantioselection in the 2-deoxy gluco series

The difficulty establishing the configuration of the exocyclic asymmetric center directly by NMR analysis especially in the α -series led us to consider a sequence of transformations leading to acyclic chains. Using propionaldehyde as the electrophilic partner of the anomeric lithiated series combined with a conversion of the C-5-C-6 carbons of the hexose to an ethyl group would lead to easily differentiated chains as illustrated in Scheme II. Thus the syn-isomers in both series would produce a meso-chain (α -series) or a C₂-symmetric chain (β -series) readily identified by NMR spectroscopy. This sequence offered the further advantage of probing the transformation of the cyclic systems

to stereodefined acyclic chains, useful precursors for other synthetic objectives.

Treatment of the glycosylstannanes 2 and 3^4 with butyl lithium in THF at -78 °C, followed after 5 min by the addition of propionaldehyde (1.5 equiv) provided the α -C-glycosides 4_S and 4_A (syn:anti isomeric ratio, 9 10:1, see below) and the β -C-glucosides 7_S and 7_A (syn:anti isomeric ratio, 1.2:1, see below), respectively (Scheme III).

That $\mathbf{4_S}$ and $\mathbf{4_A}$ were diastereoisomers at the exocyclic asymmetric center was readily established by oxidation to a single ketone 5. The $J_{1,2ax}$, $J_{1,2eq}$, $J_{2ax,3}$ coupling constant values (5.8, 3.0 and 10.1 Hz), as shown by the ¹H NMR spectrum of ketone 5, are consistent with an α -oriented side chain. Similarly isomers T_S and T_A

Scheme II.

Scheme III. (a) BuLi, THF, -78 °C then EtCHO ($4_S + 4_A$, 72 %; $7_S + 7_A$, 68 %; (b) PCC, AcONa, MS 4A, CH ₂Cl₂ (5, 81 %; 8. 86 %); (c) $2n(BH_4)_2$, Et_2O , -20 °C ($4_S + 4_A$, 95 %; $7_S + 7_A$, 90 %); (d) Ac ₂O, pyr, 93 %; (e) 3,5-dinitrobenzoylchloride, pyr, 96 %.

furnished a single ketone 8 with a β -oriented substituent deduced from the ¹H NMR spectrum ($J_{1,2ax}$ and $J_{1,2eq}$ of ~12.5 and 2.2 Hz, respectively).

For preparative purposes, isomeric α -C-glycosides 4_S and 4_A were separated as their mono-O-acetates 6_S and 6_A whereas β -C-glycosides 7_S and 7_A were easily separated only after a 3,5-dinitrobenzoylation to afford 9_S and 9_A . At this stage, ketones 5 and 8 were reduced with zinc borohydride 5_C,10,11 to alcohols 4 and 7. The stereoselectivity noted in the coupling reactions was reversed in these reductions (4_S : 4_A isomeric ratio, 1:2 and 7_S : 7_A isomeric ratio, 1:7, unoptimized conditions), a simple operation which suggested that the major isomers in the coupling reaction were the syn-isomers.

In the α -series, a sequence of transformations was conducted on the major isomer 6_S (Scheme IV). Acetolysis of the primary benzyl group and deacetylation provided the diol 11 in 90 % yield. Treatment of the diol 11 with CBr₄-PPh₃-pyridine¹² did produce the expected primary bromide 12 (58 % yield) but accompanied by the dibromide 15 (22 % yield). Opening of the ring system in 12 by activated zinc¹³ furnished the ethylenic acyclic chain 13 with high efficiency. This non-symmetric chain, readily usable in other synthetic transformations, was converted to the optically inactive tetra-O-acetate 14, easily identified as a meso-chain by ¹H NMR spectroscopy (see Experimental). The S-configuration of the exocyclic asymmetric center then follows, defining a selective attack on the re-face of the aldehyde by the asymmetric nucleophile (syn selection).9

Scheme IV. (a) CF₃COOH, Ac₂O, 0 °C, 92 %; (b) MeONa, MeOH, rt, 97 %; (c) CBr₄, PPh₃ pyr, 58 %; (d) Zn, aqueous nPrOH, 80 °C, 93 %; (e) H₂, Pd/C, MeOH then Ac₂O, pyr, 88 %.

Scheme V. (a) MeONa, MeOH, π (7_S, 92 %; 7_A, 87 %); (b)CF₃COOH, Ac₂O, 0 °C (16_S, 87 %; 16_A, 92 %); (c) MeONa, MeOH, π (17s, 96 %; 17_A, 98 %); (d) for 18_S: I₂, imidazole, PPh₃, 60 °C, 68 %; for 18_A: CBr₄, PPh₃, pyr, 0 °C, 75 %; (e) BuLi, THF, -78 °C (19_S, 79 %; 19_A, 80 %); (f) H₂, Pd/C, MeOH then Ac₂O, pyr (20_S, 82 %; 20_A, 81 %).

[†]It is assumed that the reduction proceeds via a cyclic transition state in which zinc coordinates the carbonyl and the endocyclic oxygen (1,2-asymmetric induction) with the hydride delivery occurring anti to the C-2 carbon atom (carbohydrate numbering) thus giving selectively the anti-isomers.

The same synthetic route performed on the β -Cglycosides 7_S and 7_A required that some steps be adjusted for maximum efficiency (Scheme V). First, halogenation of crystalline diol 17_S with the CBr₄-PPh₃-pyridine system furnished a mixture of the expected primary bromide (18s, R1 = Br, 48 %) and the corresponding dibromo compound (10-20 %). The best yield (68 %) was obtained using the Garegg procedure¹⁴ (I2, imidazole, PPh3; 15 % of the diiodo compound was still formed under these conditions). Secondly, opening of the tetrahydropyran ring in iodide 18s or bromide 18A with activated zinc in aqueous propanol did not proceed well, giving a 1:1 mixture (90 %) of the acyclic product 19_S or 19_A and the reduction product (21_S or its anti isomer). Compound 21s was the only one formed using the Rieke reagent. 15 However, treatment of 18s or 18A with butyl lithium gave the C9-acyclic chains 19s or 19_A in 79 and 80 % yields, respectively. Hydrogenolysis and acetylation of 19s furnished an optically active $([\alpha]_D^{20} + 62^\circ)$ tetra-O-acetate **20**_S showing a simplified ¹H NMR spectrum (2 singlets for the 4 acetyl groups for example, see Experimental) representative of a C₂symmetric chain with a homotopic center at C-5. The absolute configuration of the exocyclic asymmetric center in 20_S is thus R, pointing to a slightly syn selective process in the coupling reaction (e.g. a slightly selective attack on the si-face of the aldehyde by the βlithiated anomeric species). As a confirmation of this, diastereoisomer 20_A ([α]_D 20 +28°) showed a ¹H NMR spectrum diagnostic of a non-symmetric acyclic chain (see Experimental).

The diastereoselectivity observed can easily be explained by considering the two possible diastereo-isomeric transition structures 5c (shown in Scheme VI for the α -series) with the major path being the one in which the R group of the aldehyde and the C-2 of the sugar are anti in the cyclic structure. If chelation is not a major contributing factor, the steric empirical model proposed by Bassindale et al. 16 will predict the same selectivity taking the C-2 carbon atom as the largest carbanion ligand.

Anomeric organolithium compounds in the gluco series

Following the work we described in the 2-deoxy gluco series, a more difficult task was to find a similar solution in the gluco series, that is, one capable of generating a \(\beta \)-oxygenated organolithium compound. With an alkoxy group at the C-2 carbon atom, these types of lithiated species will eliminate^{6,17} even when a stabilizing substituent like a phenylsulfinyl¹⁸ or a phenylsulfonyl group¹⁹ is present at the anomeric center and this property has been utilized to prepare the corresponding glycals. Further, a trimethylsilyloxy group at position 2 will either rearrange to the corresponding pyranosyltrimethylsilane²⁰ (1,3 O to C silyl migration in the gluco or galacto series with an α -oriented organolithium compound) or be eliminated (manno series). Elimination could be retarded or prevented by a lithioalkoxy group at C-2 (that is, the production of a dianion) and such species have been used in C-C bond forming reactions. 21,22

For this purpose, crystalline chloride 22, easily produced from D-glucose²³ appeared to be a convenient precursor. Formation of the lithium alkoxide at position 2 by butyl lithium treatment of chloride 22 at -78 °C followed by a reductive lithiation at the anomeric center (3 equiv. of lithium naphthalenide) and stannylation furnished, however, an unacceptable yield of stannane 23 (20 %). Tin-lithium exchange by treatment with an excess of butyl lithium (2.5 equiv.; the exchange needed ~30 min at -78 °C in this case) did produce the dilithio compound 26 as evidenced by the formation of the α -Cglycoside 29 (R = Ph, 22 30-40 % yield) after the addition of benzaldehyde. As a consequence of the low tin-lithium exchange rate, the major byproduct was the protonated product 1,5-anhydro-3,4,6-tri-O-benzyl-Dglucitol 28. No glycal was formed (e.g. \(\beta\)-elimination of 'Li₂O') under these conditions.

By reductive lithiation of chloride 22 to the dilithio compound 26 and treatment with aldehydes, Wittman and Kessler²² very recently obtained remarkable coupling yields (e.g. 29, R = Ph, 70 % yield), simply

Scheme VII. (a) BuLi, 1.1 equiv. then Li naphthalenide, 3 equiv. then Bu₃SnCl, THF, -78 °C, 20 %; (b) BuLi, 2.5 equiv. then RCHO; (c) see Wittman and Kessler, ref. 22; (d) Bu₃SnLi or BuLi, 1.1 equiv. then Bu₃SnLi, 20-30 %; (e) BH3·THF, rt, 2.5 h then H₂O₂, aq. NaOH work-up, 82 %; (f) BuLi, 2.5 equiv., HMPA, 1 equiv., -78 °C, 20 min then RCHO (30, 56 %; 31, 51 %; 32, 50 %).

Scheme VIII. (a) $Me_2C(OMe)_2$, TsOH, DMF, π , 65 %; (b) see (a) then H_2 , Pd/C, MeOH; Ac_2O , pyr, 83 %.

by cooling down the reaction medium to -100 °C, thus offering an efficient solution for the synthesis of α -C-glycosides 29.

Following the procedure described in the 2-deoxy series,⁴ a low yield (20-30 %) was also obtained for the isomeric \(\beta \)-stannane 25 by treating chloride 22 either directly with an excess of tributylstannyl lithium^{5a} (2 to 5 equiv.) at 0 °C in THF or with butyl lithium (1 equiv. at -78 °C) then with Bu₃SnLi (1 equiv. or more). A more reliable, although lengthier, route to stannane 25 relied on a hydroboration-oxidation sequence on vinylic stannane 2419 which provided stereoselectively stannane 25 in 82 % yield. The \beta-orientation of the stannyl group was readily indicated by its ¹H NMR spectrum which showed the H_1 (δ 3.44) axially oriented $(J_{1,2} = 11.1 \text{ Hz with satellites}, J_{1,Sn} = 12 \text{ Hz}, \text{ arising}$ from the extra coupling with the ¹¹⁷Sn and ¹¹⁹Sn nuclei) in a 4C_1 (D) chair conformation $(J_{2,3}, J_{3,4})$ and $J_{4,5}$ of 8.5, 8.5 and 9.8 Hz, respectively).

Treatment of stannane 25 in THF at -78 °C with 2.2 equiv. of butyl lithium led to incomplete tin-lithium exchange as observed in the α -series and in contrast with the almost instantaneous transmetallation observed in the 2-deoxy series (\sim 20 % of the stannane remained after 20 min). The rate of exchange could be accelerated by adding 1 equiv. of HMPA before the butyl lithium treatment. Further addition of benzaldehyde, propionaldehyde and iso-butyraldehyde on the presumed dilithio compound 27 afforded the expected diastereoisomeric β -C-glycosides 30 (56 %, isomeric ratio, 1.1:1), 31 (51 %, isomeric ratio, 1.1:1) and 32 (50 %, isomeric ratio, 1.3:1). Some of stannane 25 was recovered and again, the major by-product (20–30 %) was the protonated product 28.

In contrast to the α -C-glycosides of the 2-deoxy series, isomers 31_S , 31_A and 32_S , 32_A were easily separated by flash chromatography. A comparison of the $J_{1,7}$ values (1.5-1.9 Hz) of the coupling constants obtained from the ¹H NMR spectra of the (slightly) major isomers 31_S and 32_S and those of the minor isomers 31_A and 32_A (6.5-7.8 Hz) suggested that 31_S and 32_S were the syn-isomers and 31_A and 32_A the anti-isomers. [†] The ethyl or i-propyl group and the C-2 carbon atom (carbohydrate numbering) of the tetrahydropyran ring are antiperiplanar in a conformation close to the staggered

[†]Compounds 31_S and 31_A have already been prepared²⁶ by hydroboration of the corresponding 1-C hydroxyalkylated glycals and the absolute configuration at the exocyclic asymmetric center defined by isopropylidene formation (see 33).

ones shown for 31_S and 31_A (Scheme VIII). For the *anti*-isomers 31_A and 32_A the staggered conformation may be stabilized by hydrogen bonding.^{8a,24}

This interpretation was confirmed by the values of the coupling constants $J_{1,7}$ found for the isopropylidene derivatives 33^+ ($J_{1,7} = 7.0$ Hz, only compatible with a boat conformation of the dioxane ring which avoids the unfavorable 1,3-diaxial interactions between the axial methyl substituent of the isopropylidene group and the ethyl group in a chair conformation) and 34 ($J_{1,7} = 9.5$ Hz, chair conformation of the dioxane ring).

This rather unselective coupling process with aldehydes and the β -dilithio compound 27 was also reported by Whittman and Kessler²² for the α -dilithio compound 26. With the α -lithiated anomeric species, and taking isobutyraldehyde as the electrophilic partner, the syn:anti selectivity of ~10:1 observed in the 2-deoxy gluco series⁴ (nucleophile i) drops to ~1:1 in the gluco series (nucleophile 26).²² The same is true to a lesser extent going from the β-2-deoxy lithio compound ii (facial selectivity of 3:1 with isobutyraldehyde)⁴ to the β-lithio compound 27 (facial selectivity of 1.3:1 with isobutyraldehyde). A competitive chelation of the aldehyde oxygen by the lithium atom at O-2 could lead to a six-membered transition state which would favor the formation of the anti-isomer and thus explain an essentially unselective process as compared with the 2deoxy series. A similar type of unselective coupling reaction (isomeric ratio, 1:1) was recently observed in the preparation of 37 (16 % yield) by de Pouilly et al.²⁵ via the samariated anomeric species derived from the sulfone 35 (Scheme IX). That the counter ion (Li⁺ or Na⁺) at the O-2 oxygen atom of the anomeric anion is detrimental to the facial selectivity is strongly suggested by the stereoselective construction of only one isomer (24 % yield) when R at O-2 is a benzyl group²⁵ (see 36 \rightarrow 38, Scheme IX). The configuration of the exocyclic asymmetric center in 38 was not defined by the authors. In keeping with the observations described above, however, the singlet for H-7 reported in the ¹H NMR spectrum (very small value of $J_{1,7}$) indicates a syn-isomer in which C-2 of the ring and the t-butyl group are antiperiplanar in a conformation close to the staggered conformation shown in 38.

This work clarifies the stereochemical course of the coupling reactions involving some anomeric lithio compounds with aldehydes. With the notable exception of the α -2-deoxy organolithium i, the facial enantioselectivity of the asymmetric lithio compounds

ii, 26 and 27 are well below a level useful enough for synthetic projects where the stereoselective construction of 1,2-diol derivatives in a single step is desired. Improvements in both diastereoselectivity and efficiency are, however, feasible by suitable modifications and we will report progress along these lines in due course.

Experimental

For General Methods see reference 4.

 $1-(3, 4, 6-Tri-O-be nzyl-2-de oxy-\alpha-D-arabino-hexo-pyranosyl)-1-propanol (4_S, 4_A)$

To a stirred solution of stannane 2^4 (2.56 g, 3.62 mmol) in THF (8 mL) at -78 °C under Ar was added butyl lithium (1.6 M in hexanes, 1.1 equiv.). After stirring for 5 min, propionaldehyde (0.4 mL, 1.5 equiv.) was added. After 45 min, the solution was treated with NH₄Cl, diluted with ethyl ether and water, and the organic phase was extracted twice with sat. aqueous NH₄Cl, dried (MgSO₄), and evaporated *in vacuo*. The residue was purified by column chromatography (10:1, CH₂Cl₂:AcOEt) to give 4_8 , 4_8 (1.24 g, 72 %).

 $1-(3,4,6-Tri-O-be\,nzy\,l-2-de\,oxy-\alpha-D$ -arabino-hexo-pyranosyl)-1-propanone (5)

A solution of 4_S, 4_A (393 mg, 0.82 mmol) in CH₂Cl₂ (2 mL) was added to a stirred solution of pyridinium chlorochromate (530 mg, 3 equiv.) in CH₂Cl₂ (3 mL) containing molecular sieves (4 Å) and sodium acetate (330 mg). Stirring was continued until complete oxidation (TLC), then ethyl ether was added. The suspension was stirred for an additional 15 min, filtered through a bed of Celite and the insoluble material was washed several times with ethyl ether. Evaporation of

Scheme IX.

the combined filtrate and washings gave a residue which was purified by column chromatography (5:1, hexanes:AcOEt) to afford 5 (316 mg, 81 %), $[\alpha]_D^{20}$ +20 ° (c 1.57, CHCl₃). ¹H NMR (CDCl₃): δ 1.04 (t, 3H, J = 7.3 Hz, CH₃), 1.755 (ddd, 1H, $J_{1,2a}$ = 5.8, $J_{2a,3}$ = 10.1, $J_{2a,2e}$ = 13.3 Hz, H-2a), 2.59 (ddd, 1H, $J_{1,2e}$ = 3.0, $J_{2e,3}$ = 4.8 Hz, H-2e), 2.605 (m, 2H, CH₂CO), 3.47 (m, 1H, $J_{5,6}$ = $J_{5,6}$: = 3.2, $J_{4,5}$ ~ 7.5 Hz, H-5), 3.51 (t, 1H, $J_{3,4}$ ~ 7.5 Hz, H-4), 3.645 (ddd, 1H, H-3), 3.72 (d, 2H, H-6,6'). Anal. calcd for C₃₀H₃₄O₅: C 75.92, H 7.22. Found: C 75.73, H 7.30.

[1S]-1-Acetoxy-1-(3,4,6-tri-O-benzyl-2-deoxy- α -D-arabino-hexopyranosyl)propane ($\mathbf{6}_{S}$) and its IR isomer ($\mathbf{6}_{A}$)

From 4_S , 4_A . Acetylation of 4_S , 4_A (1.03 g, 2.16 mmol) in pyridine (6 mL) and acetic anhydride (1.5 mL), standard work-up and column chromatography (10:1 \rightarrow 3:1, hexanes:AcOEt) gave successively 6_A (91 mg, 8%) and 6_S (949 mg, 85%). 6_A , $[\alpha]_D^{20}$ +12° (c 2.35, CHCl₃). ¹H NMR (CDCl₃): δ 0.885 (t, 3H, J=7.5 Hz, CH₃), 1.56 and 1.80 (2 m, 2H, CH₂), 1.71 (ddd, 1H, $J_{1,2}=4.8$, $J_{2,3}=9.1$, $J_{2,2}=13.8$ Hz, H-2), 1.975 (dt, $J_{1,2}=J_{2',3}=4.5$ Hz, H-2'), 2.05 (s, 3H, CH₃CO), 3.53 (t, 1H, $J_{3,4}=J_{4,5}=7.2$ Hz, H-4), 3.675 (dd, 1H, $J_{5,6}=6.5$, $J_{6,6'}=11.4$ Hz, H-6), 3.705 (m, 1H, H-5), 3.71 (dd, 1H, $J_{5,6}=2.0$ Hz, H-6'), 3.845 (ddd, 1H, $J_{1,7}=8.8$ Hz, H-1), 3.895 (ddd, 1H, $J_{3,4}=7.2$ Hz, H-3), 5.105 (dt, 1H, $J_{7,CH_2}=3.4$ and 8.8 Hz, H-7). Anal. calcd for $C_{32}H_{38}O_6$: C 74.11, H, 7.38. Found: C 74.07, H 7.45.

6_S, [α]_D²⁰ +25 ° (c 1.33, CHCl₃). ¹H NMR (CDCl₃): δ 0.875 (t, 3H, J = 7.5 Hz, CH-3), 1.55 (m, 2H, CH₂), 1.75 (ddd, 1H, $J_{2,3}$ = 5.0, $J_{1,2}$ = 8.3, $J_{2,2'}$ = 13.6 Hz, H-2), 1.97 (ddd, 1H, $J_{1,2'}$ = 4.0, $J_{2',3}$ = 5.4 Hz, H-2'), 2.01 (s, 3H, CH₃CO), 3.545 (t, 1H, $J_{3,4}$ = $J_{4,5}$ = 6.7 Hz, H-4), 3.62 (dd, 1H, $J_{5,6}$ = 3.9, $J_{6,6'}$ = 10.6 Hz, H-6), 3.71 (ddd, 1H, $J_{5,6'}$ = 5.0 Hz, H-5), 3.75 (ddd, 1H, H-6'), 3.94 (ddd, 1H, H-3), 3.945 (ddd, 1H, $J_{1,7}$ 6.4 Hz H-1), 5.005 (ddd, $J_{7,CH2}$ 5.1 and 7.9 Hz, H-7). Anal. calcd for C₃₂H₃₈O₆: C 74.11, H 7.38. Found: C 74.18, H 7.44.

From 5. To a stirred solution of ketone 5 (32 mg, 0.067 mmol) in ethyl ether (1 mL) at -78 °C under Ar was added Zn(BH₄)₂¹⁰ (0.1 M in ethyl ether, 0.5 equiv. mol). After 30 min, MeOH and NH₄Cl were added, the reaction mixture was diluted with ethyl ether and the solvents were evaporated several times with MeOH. Ethyl ether was added and the organic layer was washed with sat. aqueous NH₄Cl, water, sat. aqueous NaCl and concentrated in vacuo. The dried residue was acetylated as described above to give, after column chromatography (5:1, hexanes:AcOEt) 6_S, 6_A (33.5 mg, 95 %), 6_S:6_A isomeric ratio of 1:2 as determined by ¹H NMR.

1-(3,4,6-Tri-O-benzyl-2-deoxy- β -D-arabino-hexopyrano-syl)-1-propanol (7_S , 7_A)

From 3. The procedure utilized for 2 with 3⁴ (4.0 g, 5.65 mmol) and propional dehyde (0.55 mL, 1.3 equiv.) gave,

after column chromatography (10:1, CH_2Cl_2 :AcOEt), isomeric alcohols 7_S , 7_A (1.83 g, 68 %). For ¹H NMR, see below. Anal. calcd for $C_{30}H_{36}O_5$: C 75.60, H 7.61. Found: C 75.82, H 7.88.

From 9_S or 9_A . Ester 9_S (1.11 g, 1.65 mmol) in solution in anhydrous MeOH was treated for 2 h at 0 °C with a catalytic amount of MeONa. Standard work-up (ethyl ether extraction, washing of the organic phase with water, sat. NaCl, drying with MgSO₄ and concentration) afforded, after column chromatography (3:1, hexanes:AcOEt), alcohol 7_S (725 mg, 92 %) $[\alpha]_D^{20}$ +14.2 (c 0.85, CHCl₃). ¹H NMR (CDCl₃): δ 0.99 (t, 3H, J = 7.4 Hz, CH₃), 1.49 (dt, 1H, $J_{1,2a} = J_{2a,3} = 11.4$, $J_{2a,2e} = 12.9 \text{ Hz}, \text{ H-2a}, 2.095 \text{ (ddd}, 1\text{H}, <math>J_{1,2e} = 2.1, J_{2e,3}$ = 5.0 Hz, H-2e), 3.23 (ddd, 1H, $J_{1.7}$ = 6.3 Hz, H-1), 3.40 (dt, 1H, $J_{5,6} \sim J_{5,6'} \sim 3.2$, $J_{4,5} = 9.5$ Hz, H-5), 3.45 (ddd, 1H, J_{7,CH_2} = 3.8 and 8.2 Hz, H-7), 3.52 (t, 1H, $J_{3,4} \sim 9$ Hz, H-3), 3.68 (ddd, 1H, H-3), 3.72 (m, 2H, H-6,6'). Anal. calcd for C₃₀H₃₆O₅: C 75.60, H 7.61. Found: C 75.80, H 7.80.

Deacylation of ester 9_A (812 mg, 1.21 mmol) following the above procedure provided 7_A (501 mg, 87 %) $[\alpha]_D^{20}$ + 11.5 ° (c 1.03, CHCl₃). ¹H NMR (CDCl₃): δ 0.98 (t, 3H, J = 7.6 Hz, CH₃), 1.46 (m, 2H, CH₂), 1.595 (dt, $J_{1,2a} = J_{2a,3} \sim 11.9$, $J_{2a,2e} = 12.9$ Hz, H-2a), 2.11 (ddd, 1H, $J_{1,2e} = 2.0$, $J_{2e,3} = 5.3$ Hz, H-2e), 3.34 (ddd, 1H, $J_{1,7} = 4.0$ Hz, H-1), 3.42–3.49 and 3.63–3.75 (2 m, 6H, H-3,4,6,6',7).

*1-(3,4,6-Tri-O-benzyl-2-deoxy-β-D-*arabino-*hexopyranosyl)-1-propanone* (8)

Oxidation of 7_S , 7_A (70 mg, 0.147 mmol) according to the procedure used for 5 gave, after column chromatography (6:1, hexanes:AcOEt), ketone 8 (60 mg, 86 %) $[\alpha]_D^{20}$ +39 ° (c 2.80, CHCl₃). ¹H NMR (CDCl₃): δ 1.05 (t, 3H, J 7.1 Hz, CH₃), 1.49 (q, 1H, $J_{1,2a} \sim J_{2a,2e} \sim J_{2a,3} \sim 12.5$ Hz, H-2a), 2.465 (ddd, 1H, $J_{1,2e} = 2.2$, $J_{2e,3} = 5.1$ Hz, H-2e), 2.685 (q, 2H, J = 7.1 Hz, CH₂CO), 3.45 (m, 1H, H-5), 3.49 (t, 1H, $J_{3,4} = J_{4,5} = 8.1$ Hz, H-4), 3.70 (ddd, 1H, H-3), 3.70–3.78 (m, 2H, H-6,6'), 3.82 (dd, 1H, H-1). Anal. calcd for C₃₀H₃₄O₅: C 75.92, H 7.22. Found: C 75.98, H 7.38.

[IR]-1-(3,5-Dinitrobenzoyloxy)-1-(3,4,6-tri-O-benzyl-2-deoxy- β -D-arabino-hexopyranosyl)propane (9_S) and its 1S isomer (9_A)

From 7_S and 7_A . Acylation of alcohols 7_S and 7_A (1.60 g, 3.36 mmol) in pyridine (4 mL) with 3,5-dinitrobenzoyl chloride (1.5 equiv.) at rt for 3 h followed by a standard work-up and column chromatography (3:1, hexanes:AcOEt) gave successively 9_S (1.19 g) and 9_A (0.97 g) in a total yield of 96 %, isomeric ratio, ~1.2:1. 9_S , $[\alpha]_D^{20}$ +5.9 ° (c 2.7, CHCl₃). ¹H NMR (CDCl₃): 8_S 0.99 (t, 3H, J = 7.5 Hz, CH₃), 1.505 (q, 1H, $J_{1,2a}$ ~ $J_{2a,2e}$ ~ $J_{2a,3}$ 12.2 Hz, H-2a), 1.83 (m, 2H, J_{7,CH_2} = 5.0 and 8.3 Hz, CH₂), 2.15 (ddd, 1H, $J_{1,2e}$ = 2.0, $J_{2e,3}$ = 4.9 Hz, H-

2e), 3.60 (ddd, 1H, $J_{1,7}$ = 5.6 Hz, H-1), 3.62–3.75 (m, 3H, H-3,4,5), 5.23 (ddd, 1H, H-7). Anal. calcd for $C_{37}H_{38}N_2O_{10}$: C 66.26, H 5.71. Found: C 65.97, H 5.51.

9_A, $[\alpha]_D^{20}$ +5.9 ° (c 4.38, CHCl₃). ¹H NMR (CDCl₃): δ 0.99 (t, 3H, J = 7.5 Hz, CH₃), 1.61 (q, 1H, $J_{1,2a} \sim J_{2a,2e} \sim J_{2a,3} \sim 12.5$ Hz, H-2a), 1.84 (m, 2H, CH₂), 2.18 (ddd, 1H, $J_{1,2e}$ = 2.0, $J_{2e,3}$ = 5.1 Hz, H-2e), 3.425 (ddd, 1H, $J_{5,6}$ = 2.0, $J_{5,6}$ = 4.0, $J_{4,5}$ = 9.5 Hz, H-5), 3.555 (dd, 1H, $J_{3,4}$ = 9.0 Hz, H-4), 3.61 (ddd, 1H, $J_{1,7}$ = 4.5 Hz, H-1), 3.68 (ddd, 1H, H-3), 3.69 (dd, 1H, $J_{6,6}$ = 11.3 Hz, H-6), 3.76 (dd, 1H, H-6'), 5.32 (dt, 1H, J_{7,CH_2} = 6.7 Hz, H-7). Anal. calcd for C₃₇H₃₈N₂O₁₀: C 66.26, H 5.71. Found: C 65.97, H 5.51.

From 8. Ketone 8 (21 mg, 0.044 mmol) treated under the conditions described above ($5 \rightarrow 4_S$, 4_A) provided, after column chromatography (10:1, CH₂Cl₂:AcOEt) 7_S , 7_A (20 mg, 95 %). Acylation as above with 3,5-dinitrobenzoyl chloride furnished, after column chromatography (4:1, hexanes:AcOEt), 9_S , 9_A (26.5 mg), 9_S : 9_A isomeric ratio of 1:7 as determined by ¹H NMR

[1S]-1-Acetoxy-1-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-\alpha-D-arabino-hexopyranosyl)propane (10)

Trifluoroacetic acid (1.5 mL) was added to a stirred solution of 6s (798 mg, 1.54 mmol) in acetic anhydride (4 mL) cooled to 0 °C, then the reaction was followed by TLC (3:1, hexanes:AcOEt). After 3 h at 0 °C, the reaction mixture was diluted with ethyl ether, washed with cold water, sat. aqueous NaHCO₃ and NaCl. The organic layer was dried (MgSO₄) and concentrated. The residue was purified by column chromatography (8:1 \rightarrow 4:1, hexanes:AcOEt) to give 10 (666 mg, 92 %), $[\alpha]_D^{20}$ +28.5 ° (c 1.47, CHCl₃). ¹H NMR (CDCl₃): δ 0.89 (t, 3H, J = 7.5 Hz, CH₃), 1.55 (m, 2H, CH₂), 1.735 (ddd, 1H, $J_{1,2a} = 4.9$, $J_{2a,3} = 7.8$, $J_{2a,2e} = 14.0$ Hz, H-2a), 1.97 (ddd, 1H, $J_{2e,3} = 4.0$, $J_{1,2e} = 6.1$ Hz, H-2e), 2.03 and 2.05 (2 s, 6H, 2 C H_3 CO), 3.375 (dd, 1H, $J_{3,4} = 6.0$, $J_{4,5}$ = 6.3 Hz, H-4), 3.745 (ddd, 1H, H-3), 3.95 (dt, 1H, $J_{1,7}$ = 6.0 Hz, H-1), 4.015 (ddd, 1H, $J_{5,6}$ = 3.1, $J_{5,6}$ = 6.7 Hz, H-5), 4.13 (dd, 1H, $J_{6,6}$ = 12.0 Hz, H-6), 4.42 (dd, 1H, H-6'), 4.98 (dt, 1H, J_{7,CH_2} = 6.0 and 7.7 Hz, H-7). Anal. calcd for C₂₇H₃₄O₇: C 68.92, H 7.28. Found: C 69.12, H 7.20.

[1S]-1-(3,4-Di-O-benzyl-2-deoxy- α -D-arabino-hexo-pyranosyl)-1-propanol (11)

Deacetylation of **10** (632 mg, 1.34 mmol) in anhydrous methanol (10 mL) with a catalytic amount of MeONa at rt provided, after a standard work-up and column chromatography (20:1, CH₂Cl₂:MeOH), **11** (502 mg, 97%), $[\alpha]_D^{20}$ +10.5° (c 3.65, CHCl₃). ¹H NMR (CDCl₃): δ 0.99 (t, 3H, J = 7.5 Hz, CH₃), 1.43 (m, 2H, CH₂), 1.74 (ddd, 1H, $J_{1,2}$ = 4.6, $J_{2,3}$ = 7.7, $J_{2,2'}$ = 14.0 Hz, H-2), 2.01 (ddd, 1H, $J_{2',3}$ = 4.0, $J_{1,2'}$ = 6.3, H-2'), 2.10 and 2.50 (2 bs, 2H, 2 OH), 3.43 (t, 1H, $J_{3,4}$ = $J_{4,5}$ = 6.0 Hz, H-4),

3.59 (dt, 1H, $J_{1,7} = 8.0$, $J_{7,CH_2} = 3.6$ and 8.0 Hz, H-7), 3.685 (dd, 1H, $J_{5,6} = 3.2$, $J_{6,6} = 11.5$ Hz, H-6), 3.71–3.83 (m, 2H, H-1,5), 3.76 (ddd, 1H, H-3), 3.905 (dd, 1H, $J_{5,6} = 6.2$ Hz, H-6'). Anal. calcd for $C_{23}H_{30}O_5$: C 71.48, H 7.82. Found: C 71.51, H 7.92.

[1S]-1-(3,4-Di-O-benzyl-6-bromo-2,6-dideoxy- α -D-arabino-hexopyranosyl)-1-propanol (12)

Triphenylphosphine (415 mg, 2.3 equiv.) and, after 5 min, carbon tetrabromide (263 mg, 1.15 equiv.) were successively added to a cooled (0 °C) solution of 11 (266 mg, 0.69 mmol) in pyridine (1.5 mL). After being stirred overnight at 4 °C, MeOH (1 mL) was added to the reaction mixture. The solvents were evaporated in vacuo, and the residue was purified by column chromatography (30:1 \rightarrow 10:1, CH₂Cl₂:AcOEt). Dibromide 15 eluted first (77 mg, 22 %), then 12 (181 mg, 58 %), $[\alpha]_D^{20} \sim 0^{\circ} (c \ 3.45, \text{ CHCl}_3)$. ¹H NMR (CDCl₃): δ 0.99 (t, 3H, J = 7.4 Hz, CH₃), 1.45 (m, 2H, CH₂), 1.73 (ddd, 1H, $J_{2,3} = 3.9$, $J_{1,2} = 6.1$, $J_{2,2} = 13.9$ Hz, H-2), 1.98 (ddd, 1H, $J_{1,2'} = 3.8$, $J_{2',3} = 8.3$ Hz, H-2'), 2.50 (bs, 1H, OH), 3.51 (t, 1H, $J_{3,4} = J_{4,5} = 4.8$ Hz, H-4), 3.62-3.73 (m, 3H, H-6,6',7), 3.78 (dt, 1H, $J_{1,7} = 6.1$, H-1), 4.01 (dt, 1H, $J_{5.6} = 4.8$, $J_{5.6} = 7.5$ Hz, H-5). Anal. calcd for C₂₃H₂₉BrO₄: C 61.47, H 6.50. Found: C 61.73, H 6.73.

[3R, 4R, 6S, 7S]-3,4-Dibenzyloxy-6,7-dihydroxynon-1-ene (13)

Activated zinc (50 equiv.) was added to a solution of 12 (163 mg, 0.36 mmol) in aqueous n-propanol (93:7, v/v, 10 mL). The stirred reaction mixture was heated at 80 °C for 1.5 h, cooled, filtered through a bed of Celite and the insoluble material was washed with MeOH. The filtrate and washings were concentrated in vacuo and the residue was purified by column chromatography (10:1, $CH_2Cl_2:MeOH$) to give 13 (121 mg, 90 %), $[\alpha]_D^{20} + 12^{\circ} (c \ 1.51, CHCl_3)$. H NMR (CDCl₃): $\delta \ 0.96$ $(t, 3H, J = 7.5 Hz, CH_3), 1.47 (m, 2H, H-8,8), 1.69 (dt,$ 1H, $J_{4,5} = J_{5,6} = 9.7$, $J_{5,5} = 14.8$ Hz, H-5), 1.79 (ddd, 1H, $J_{5',6} = 2.7$, $J_{4,5'} = 4.1$ Hz, H-5'), 2.265 (d, 1H, $J_{7,OH}$ = 5.8 Hz, OH-7), 3.245 (m, 1H, $J_{6.7}$ = 4.5, $J_{7.8}$ = 9.0, $J_{7,8'} = 9.9 \text{ Hz}, \text{ H-7}, 3.53 \text{ (d, 1H, } J_{6,OH} = 2.3 \text{ Hz}, \text{ OH-6}),$ 3.61 (m, 1H, H-6), 3.82 (ddd, 1H, $J_{3,4} = 5.4$ Hz, H-4), 4.025 (m, 1H, $J_{1,3} \sim 1$, $J_{2,3} = 7.2$ Hz, H-3), 5.34 (dt, 1H, $J_{1,1}' = 1.6$, $J_{1,2} = 17.3$ Hz, H-1), 5.38 (dd, 1H, $J_{1,2} = 10.2$ Hz, H-1'), 5.825 (ddd, 1H, H-2). Anal. calcd for C₂₃H₃₀O₄: C 74.56, H 8.16. Found: C 74.28, H 8.16.

[3R,4R,6S,7S]-3,4,6,7-Tetraacetoxynonane (14)

A solution of 13 (80 mg, 0.22 mmol) in methanol (1 mL) containing 10 % Pd C (~ 5 mg) under H₂ was stirred for 1 h at rt. The mixture was filtered through Celite, and the insoluble material washed with several portions of methanol. Evaporation to dryness of the combined filtrate and washings gave a residue, a part of which was purified by column chromatography (9:1, CH₂Cl₂:MeOH) to obtain an analytically pure sample of

the tetrol, $[\alpha]_D^{20}$ 0 (c 1.7, MeOH). Anal. calcd for $C_9H_{20}O_4$: C 56.23, H 10.48. Found: C 56.41, H 10.31.

Most of the previous residue, acetylated under standard conditions (pyridine, acetic anhydride) afforded, after column chromatography (4:1, hexanes:AcOEt), 14 (69 mg, 88 % from 13), $[\alpha]_D^{20}$ 0 ° (c 2.0, CHCl₃). ¹H NMR (CDCl₃): δ 0.87 (t, 6H, $J_{1,2(8,9)} = 7.5$ Hz, H-1,9), 1.56 (m, 4H, $J_{2,3(7,8)} = 6.2$, $J_{2',3(7,8')} = 7.5$ Hz, H-2,2',8,8'), 1.74 (m, 2H, $J_{4,5(5',6)} = 2.2$, $J_{4,5'(5,6)} = 6.5$ Hz, H-5,5'), 2.095 and 2.105 (2 s, 12H, 4 Ac), 4.95–5.08 (m, 4 H, H-3,4,6,7). Anal. calcd for $C_{17}H_{28}O_8$: C 56.65, H 7.83. Found: C 56.71, H 7.70.

[IR]-1-Acetoxy-1-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-β-D-arabino-hexopyranosyl)propane (16_S)

Acetolysis of 7_S (710 mg, 1.49 mmol) under the conditions described for the preparation of 10 gave, after purification by column chromatography (4:1, hexanes:AcOEt), 16_S (610 mg, 87 %), $[\alpha]_D^{20} + 33.5$ ° (c 1.0, CHCl₃). ¹H NMR (CDCl₃): δ 0.89 (t, 3H, J=7.4 Hz, CH₃), 1.48 (q, 1H, $J_{1,2a} = J_{2a,2e} = J_{2a,3} = 12.2$ Hz, H-2a), 1.64 (m, 2H, CH₂), 2.06 (ddd, 1H, $J_{1,2e} = 1.9$, $J_{2e,3} = 5.7$ Hz, H-2e), 2.03 and 2.095 (2 s, 6H, 2 Ac), 3.34–3.44 (m, 2H, H-4.5), 3.44 (ddd, 1H, $J_{1,7} = 4.3$ Hz, H-1), 3.69 (ddd, 1H, $J_{3,4} = 8.0$ Hz, H-3), 4.20 (dd, 1H, $J_{5,6} = 5.0$, $J_{6,6} = 11.8$ Hz, H-6), 4.33 (dd, 1H, $J_{5,6} = 1.7$, H-6'), 4.865 (dt, 1H, J_{7,CH_2} 4.3 and 8.2 Hz, H-7). Anal. calcd for $C_{27}H_{34}O_7$: C 68.92, H 7.29. Found: C 68.96, H 7.31.

[1S]-1-Acetoxy-1-(6-O-acetyl-3,4-di-O-benzyl-2-deoxy-\beta-D-arabino-hexopyranosyl)propane (16_A)

Acetolysis of 7_A (490 mg, 1.03 mmol) as above gave, after column chromatography (3:1 \rightarrow 2:1, hexanes: AcOEt), 16_A (442 mg, 92 %), $[\alpha]_D^{20}$ -6.3 ° (c 0.95, CHCl₃). ¹H NMR (CDCl₃): δ 0.88 (t, 3H, J = 7.5 Hz, CH₃), 1.445 (dt, 1H, $J_{1,2a} = J_{2a,3} = 11.2$, $J_{2a,2e} = 11.9$ Hz, H-2a), 1.66 (m, 2H, $J_{7,CH_2} = 4.1$ and 8.3 Hz, CH₂), 2.025 and 2.065 (2 s, 6 H, 2 Ac), 2.125 (ddd, 1H, $J_{1,2e} = 2.0$, $J_{2e,3} = 5.1$ Hz, H-2e), 3.34–3.44 (m, 3H, H-1,4,5), 3.655 (ddd, 1H, $J_{3,4} = 8.6$ Hz, H-3), 4.22 (dd, 1H, $J_{5,6} = 4.6$, $J_{6,6'} = 11.8$ Hz, H-6), 4.32 (dd, 1H, $J_{5,6'} = 1.9$ Hz, H-6'), 4.82 (ddd, 1H, $J_{1,7} = 1.9$ Hz, H-7). Anal. calcd for C₂₇H₃₄O₇: C 68.92, H 7.29. Found: C 68.88, H 7.19.

[IR]-1-(3, 4-Di-O-benzyl-2-deoxy- β -D-arabino-hexo-pyranosyl)-1-propanol (17_S)

Deacetylation of $16_{\rm S}$ (555 mg, 1.18 mmol) as described for the preparation of 11 gave, after column chromatography (20:1, CH₂Cl₂:MeOH), $17_{\rm S}$ (437 mg, 96 %), $[\alpha]_{\rm D}^{20}$ +6.5 ° (c 1.25, CHCl₃), mp: 94 °C (ethylether:hexanes). ¹H NMR (CDCl₃): δ 0.985 (t, 3H, J = 7.5 Hz, CH₃), 1.48 (m, 2H, CH₂), 1.49 (m, 1H, $J_{2a,3}$ = 11.2, $J_{1,2a}$ = 11.8, $J_{2a,2e}$ = 12.9 Hz, H-2a), 2.10 (ddd, 1H, $J_{1,2e}$ = 1.9, $J_{2e,3}$ = 5.1 Hz, H-2e), 3.295 (ddd, 1H, $J_{1,7}$ =

6.0 Hz, H-1), 3.305 (ddd, 1H, $J_{5,6} = 3.0$, $J_{5,6} = 4.5$, $J_{4,5} = 9.5$ Hz, H-5), 3.42 (ddd, 1H, $J_{7,CH_2} = 2.0$ and 8.2 Hz, H-7), 3.455 (dd, 1H, $J_{3,4} = 9.0$ Hz, H-4), 3.705 (ddd, 1H, H-3), 3.72 (dd, 1H, $J_{6,6} = 12.1$ Hz, H-6'), 3.86 (dd, 1H, H-6). Anal. calcd for $C_{23}H_{30}O_5$: C 71.48, H 7.82. Found: C 71.60, H 7.81.

[1S]-1-(3, 4-Di-O-be nzyl-2-deoxy- β -D-arabino-hexo-pyranosyl)-1-propanol (17_A)

Deacetylation of 16_A (431 mg, 0.92 mmol) as above gave, after column chromatography (20:1, CH₂Cl₂: MeOH), 17_A (349 mg, 98 %), $\{\alpha\}_D^{20}$ +0.7 ° (c 1.03, CHCl₃), mp: 91–92 °C (ethyl ether:hexanes). ¹H NMR (CDCl₃): δ 0.985 (t, 3H, J = 7.4 Hz, CH₃), 1.47 (m, 2H, CH₂), 1.565 (dt, 1H, $J_{1,2a}$ = $J_{2a,3}$ = 11.5, $J_{2a,2e}$ = 12.5 Hz, H-2a), 2.15 (ddd, 1H, $J_{1,2e}$ = 2.0, $J_{2e,3}$ = 5.1 Hz, H-2e), 3.335 (ddd, 1H, $J_{5,6}$ = 2.9, $J_{5,6}$ = 5.1, $J_{4,5}$ = 9.0 Hz, H-5), 3.37 (ddd, 1H, $J_{1,7}$ = 4.5 Hz, H-1), 3.42 (dd, 1H, $J_{3,4}$ = 8.5 Hz, H-4), 3.63 (dt, 1H, J_{7,CH_2} = 4.5 and 8.5 Hz, H-7), 3.69 (dd, 1H, H-3), 3.85 (dd, 1H, H-6'). Anal. calcd for C₂₃H₃₀O₅: C 71.48, H 7.82. Found: C 71.43, H 7.63.

[1R]-1-(3, 4-di-O-benzyl-2,6-dideoxy-6-iodo- β -D-arabino-hexopyranosyl)-1-propanol (18_S)

A solution of 17_S (198 mg, 0.51 mmol) in toluene (15 mL) containing triphenylphosphine (204 mg, 1.5 equiv.) and imidazole (106 mg, 3 equiv.) was distilled until a final volume of 1.5 mL was reached. The temperature of the solution was adjusted to 55 °C and iodine (143 mg, 1.1 equiv.) was then added. After 30 min the reaction mixture was diluted with ethyl ether and the organic layer was washed with sat. aqueous sodium sulfite, water, sat. aqueous NaCl, dried (Na2SO4) and concentrated. The residue was purified by column chromatography (15:1, CH₂Cl₂:AcOEt). The 6,7-diiodo compound (46 mg, 15 %) eluted first, then 18_S (172 mg, 68 %), $[\alpha]_D^{20}$ +20.5 ° (c 2.38, CHCl₃). ¹H NMR (CDCl₃): δ 1.00 (t, 3H, J = 7.4 Hz, CH₃), 1.53 (m, 1H, $J_{1,2a} = 11.5$, $J_{2a,2e} \sim J_{2a,3} \sim 13.0$ Hz, H-2a), 1.55 (m, 2H, CH₂), 2.12 (ddd, 1H, $J_{1,2c} = 2.0$, $J_{2c,3} = 5.0$ Hz, H-2e), 2.45 (bs, 1H, OH), 3.07 (ddd, $J_{5,6} = 2.7$, $J_{5,6} = 6.8$, $J_{4,5} = 9.0 \text{ Hz}, \text{ H-5}, 3.295 \text{ (dd, 1H, } J_{3,4} = 8.4 \text{ Hz}, \text{ H-4}),$ 3.305 (dd, 1H, $J_{6,6}$ = 10.5 Hz, H-6), 3.31 (ddd, 1H, $J_{1,7}$ = 6.0 Hz, H-1), 3.43 (ddd, 1H, $J_{7,CH2}$ = 4.0 and 8.2 Hz, H-7), 3.525 (dd, 1H, H-6'), 3.72 (ddd, 1H, H-3). Anal. calcd for C₂₃H₂₉IO₄: C 55.65, H 5.89. Found: C 55.94, H 5.92.

[1S]-1-(3,4-Di-O-benzyl-6-bromo-2,6-dideoxy- β -D-arabino-hexopyranosyl)-1-propanol (18_A)

Halogenation of diol 17_A (160 mg, 0.41 mmol) as described for the preparation of 12 gave, after column chromatography (30:1 \rightarrow 15:1, CH₂Cl₂:AcOEt), the 6,7-dibromo product (25 mg, 12 %) and 18_A (139 mg, 75 %), $[\alpha]_D^{20}$ +8.5 ° (c 1.56, CHCl₃). ¹H NMR (CDCl₃): δ 0.985 (t, 3H, J = 7.4 Hz, CH₃), 1.48 (m, 2H, CH₂), 1.59

(dt, $J_{1,2a} \sim J_{2a,3} \sim 12.0$, $J_{2a,2e} = 12.8$ Hz, H-2a), 2.145 (ddd, 1H, $J_{1,2e} = 2.0$, $J_{2e,3} = 5.0$ Hz, H-2e), 3.38 (ddd, 1H, $J_{1,7} = 4.0$ Hz, H-1), 3.41 (ddd, 1H, $J_{5,6'} = 2.5$, $J_{5,6} = 4.5$, $J_{4,5} = 8.6$ Hz, H-5), 3.455 (dd, 1H, $J_{3,4} = 8.1$ Hz, H-4), 3.585 (dd, 1H, $J_{6,6'} = 11.0$ Hz, H-6), 3.625 (m, 1H, H-7), 3.66 (dd, 1H, H-6'), 3.70 (ddd, 1H, H-3). Anal. calcd for $C_{23}H_{29}BrO_4$: C 61.47, H 6.50. Found: C 61.30, H 6.49.

[3R, 4R, 6R, 7R]-3,4-Dibenzyloxy-6,7-dihydroxynon-1-ene (19_S)

To a solution of 18_S (130 mg, 0.26 mmol) in THF at -78°C under Ar was added BuLi (1.5 M in hexanes, 0.36 mL, 2.1 equiv.). After 10 min, ammonium chloride was added and the temperature was raised to -20 °C. The reaction mixture was diluted with ethyl ether and the organic layer was washed with sat. aqueous sodium sulfite, sat. NH₄Cl, sat. NaCl, dried (Na₂SO₄), and concentrated in vacuo. The residue was purified by column chromatography (10:1, CH2Cl2:AcOEt) to give **19_S** (78 mg, 80 %), $[\alpha]_D^{20}$ +24.5 (c 1.46, CHCl₃). ¹H NMR (CDCl₃): δ 0.935 (t, 3H, J = 7.5 Hz, CH₃), 1.42 (m, 2H, H-8,8'), 1.58 (ddd, 1H, $J_{5,6} = 2.7$, $J_{4,5} = 8.6$, $J_{5,5}$ ' = 14.5 Hz, H-5), 1.74 (ddd, 1H, $J_{5',6}$ = 9.7 Hz, H-5'), 2.46 (bs, 2H, 2 OH), 3.24 (dt, 1H, $J_{6.7} = 5.0$, $J_{7.8} = J_{7.8}$ = 8.0 Hz, H-7), 3.60 (ddd, 1H, H-6), 3.815 (ddd, 1H, $J_{3.4}$ = 6.0 Hz, H-4), 3.995 (m, 1H, $J_{2,3}$ = 7.3 Hz, H-3), 5.32 (m, 1H, $J_{1,3} \sim 1$, $J_{1,1} = 2.1$, $J_{1,2} = 17.1$ Hz, H-1), 5.35 $(dd, J_{1',2} = 10.9 \text{ Hz}, H-1'), 5.80 (ddd, 1H, H-2).$ Anal. calcd for C₂₃H₃₀O₄: C 74.56, H 8.16. Found: C 74.59, H 7.92.

[3R, 4R, 6R, 7S]-3,4-Dibenzyloxy-6,7-dihydroxynon-1-ene (19_A)

Treatment of 18_A (67 mg, 0.15 mmol) as described above for 18_S gave, after column chromatography (10:1, CH₂Cl₂:AcOEt), 19_A (44 mg, 80 %), $[\alpha]_D^{20} + 13.3$ ° (c 1.14, CHCl₃), mp: 54–55°C (ethyl ether:hexanes). ¹H NMR (CDCl₃): δ 0.95 (t, 3H, J = 7.5 Hz, CH₃), 1.40 (m, 2H, H-8,8'), 1.57 (ddd, 1H, $J_{4,5}$ = 7.6, $J_{5,6}$ = 7.7, $J_{5,5}$ = 14.6 Hz, H-5), 1.75 (ddd, 1H, $J_{4,5'}$ = 3.8, $J_{5',6}$ = 10.3 Hz, H-5'), 1.92 (d, 1H, $J_{7,OH}$ = 4.0 Hz, OH-7), 2.75 (d, 1H, $J_{6,OH}$ = 4.5 Hz, OH-6), 3.49 (m, 1H, $J_{6,7}$ = 4.0, $J_{7,8}$ = 8.4 Hz, H-7), 3.745 (m, 1H, H-6), 3.825 (ddd, 1H, $J_{3,4}$ = 6.5, H-4), 4.02 (dd, 1H, $J_{2,3}$ = 7.4 Hz, H-3), 5.33 (m, 1H, $J_{1,3}$ ~ 0.8, $J_{1,1'}$ = 2.4, $J_{1,2}$ = 16.9 Hz, H-1), 5.355 (dd, 1H, $J_{1',2}$ = 10.8 Hz, H-1'), 5.80 (ddd, 1H, H-2). Anal. calcd for C₂₃H₃₀O₄: C 74.56, H 8.16. Found: C 74.71, H 8.30.

[3R,4R,6R,7R]-3,4,6,7-Tetraacetoxynonane (20_S)

Treatment of 19_S (44 mg, 0.12 mmol) using the same conditions described for the preparation of 14 gave, after column chromatography (12:1, CH₂Cl₂:AcOEt), 20_S (35 mg, 82 %), $[\alpha]_D^{20}$ +62 ° (c 1.38, CHCl₃), mp: 83 °C (ethyl ether:hexanes). ¹H NMR (CDCl₃): δ 0.89 (t, 6H, $J_{1,2(8,9)} = 7.5$ Hz, H-1,9), 1.54 (m, 4 H, $J_{2,3(7,8)} = 5.5$,

 $J_{2',3(7,8')} = 8.0$ Hz, H-2,2',8,8'), 1.765 (dd, 2H, $J_{4,5(5',6)} = 5.9$, $J_{4,5'(5,6)} = 7.9$ Hz, H-5,5'), 2.065 and 2.09 (2 s, 12H, 4 Ac), 4.87 (ddd, 2H, $J_{3,4(6,7)} = 4.0$, H-3,7), 5.08 (ddd, 2H, H-4,6). Anal. calcd for $C_{17}H_{28}O_8$: C 56.65, H 7.83. Found: C 56.54, H 7.60.

[3R,4R,6R,7S]-3,4,6,7-Tetraacetoxynonane (20_A)

Treatment of $\mathbf{19_A}$ (33 mg, 0.09 mmol) under the same conditions described for the preparation of $\mathbf{14}$ gave the tetrol derivative, $[\alpha]_D^{20}$ +30 ° (c 0.89, MeOH), mp: 123 °C (CH₂Cl₂:MeOH) and, after column chromatography (12:1 \rightarrow 7:1, CH₂Cl₂:AcOEt), $\mathbf{20_A}$ (26 mg, 81 %), $[\alpha]_D^{20}$ + 28.3 ° (c 0.60, CHCl₃). ¹H NMR (CDCl₃): δ 0.90 and 0.905 (2t, 6H, J = 7.4 Hz, 2 CH₃-1,9), 1.55 (m, 4H, J = 4.1 and 7.4 Hz, H-2,2',8,8'), 1.79 (m, 2H, $J_{4,5(5',6)}$ = 2.2, $J_{4,5'(5,6)}$ = 4.1, $J_{5,5'}$ = 10.0 Hz, H-5,5'), 2.015, 2.055, 2.065 and 2.105 (4s, 12H, 4 Ac), 4.89 (ddd, 1H, $J_{7,8}$ = 1.7, $J_{7,8'}$ = 4.1, $J_{6,7}$ = 8.1 Hz, H-7), 4.93 (ddd, 1H, $J_{3,4}$ = 3.2 Hz, H-4), 4.96 (ddd, 1H, $J_{2,3}$ = 1.7, $J_{2',3}$ = 4.1 Hz, H-3), 5.14 (ddd, 1H, H-6). Anal. calcd for C₁₇H₂₈O₄: C 56.65, H 7.83. Found: C 56.75, H 7.59.

Tributyl-(3,4,6-tri-O-benzyl- β -D-gluco-hexopyranosyl)-stannane (25)

From 22. To a stirred solution of chloride 22²³ (486 mg, 1.04 mmol) in THF (2 mL) at -78 °C under Ar were added successively butyl lithium (1.6 M in hexanes, 1 equiv.) and after 3 min tributylstannyl lithium^{5a} (0.4 M in THF, 5.2 mL, 2 equiv.). The temperature was raised to 0 °C and after 30 min more tributylstannyl lithium (1 equiv.) was added. After 1 h at 0 °C, NH₄Cl was added and the mixture was diluted with ethyl ether. The organic layer was washed with water, sat. aqueous NH₄Cl, dried (MgSO₄) and concentrated in vacuo. Column chromatography (hexanes then 12:1 hexanes:AcOEt) of the residue provided 25 (201 mg, 27%).

From 24. To a stirred solution of vinylic stannane 24^{19} (635 mg, 0.90 mmol) in THF (2.5 mL) at rt under Ar was added 1 M borane-THF (2 equiv.). After stirring at rt for 2.5 h (0.5 equiv.) of borane was added after 1 h), 3 M NaOH (2 equiv.) and 10 M H_2O_2 (6 equiv.) were added at 0°C. Stirring was continued for 1 h and the mixture was concentrated in vacuo. The mixture was diluted with ethyl ether and the organic layer was washed with water, sat. NH₄Cl, sat. NaCl, dried (MgSO₄) and the solvent evaporated. The residue was purified by column chromatography (hexanes then 15:1 \rightarrow 10:1, hexanes:AcOEt) to give 25 (533 mg, 82 %).

25: $[\alpha]_D^{20}$ -0.6 ° (c 4.30, CHCl₃). ¹H NMR (CDCl₃): δ 0.91 (m, 12H, 4 CH₃), 1.30 and 1.52 (2 m, 24 H, 12 CH₂), 2.06 (d, 1H, $J_{2,OH}$ = 3.0 Hz, OH), 3.30 (ddd, 1H, $J_{5,6}$ = 2.2, $J_{5,6}$ = 4.8, $J_{4,5}$ = 9.8 Hz, H-5), 3.39 (t, 1H, $J_{2,3}$ = $J_{3,4}$ = 8.5 Hz, H-3), 3.435 (d, 1H, $J_{1,2}$ = 11.0 Hz, H-1), 3.61 (dd, 1H, H-4), 3.685 (dd, 1H, $J_{6,6}$ = 11.9 Hz, H-6), 3.73 (dd, 1H, H-6'), 3.74 (ddd, 1H, H-2), ^{117,119}Sn satellites for H-1: $J_{Sn,1}$ = 12 Hz. Anal. calcd for C₃₉H₅₆O₅Sn: C 64.74, H 7.80. Found: C 64.54, H 7.86.

Phenyl (3,4,6-tri-O-benzyl- β -D-gluco-hexopyranosyl)-methanol (30_S, 30_A)

To a stirred solution of stannane 25 (94 mg, 0.13 mmol) in THF (0.5 mL) at -78 °C under Ar was added HMPA (1 equiv.) then butyl lithium (1.5 M in hexanes; 2.5 equiv., 1 fast and 1.5 in 5 min). After stirring for 20 min, benzaldehyde (40 µL, 3 equiv.) was added. After 30 min at -78 °C, a work-up as described for the preparation of 4 and column chromatography (6:1 \rightarrow 1:1, CH₂Cl₂:AcOEt) provided in the elution order stannane **25** (6.2 mg, 7 %), the protonated product 28^{25} (11 mg. 17 %) and 30_S , 30_A (39 mg, 56 %). ¹H NMR (CDCl₃): δ 1.88, 2.68 and 2.82 (3 bs, OH), 3.40-3.70 non analyzable pattern, 3.78 (bt, $J_{1,2} \sim J_{2,3} \sim 9$ Hz, H-2 both isomers), 7.20-7.42 (m, 20H, arom). Isomeric ratio was obtained from the singlets at 2.68 (one isomer) and 2.82 (other isomer). Anal. calcd for C₃₄H₃₆O₆: C 75.53, H, 6.71. Found: C 75.62, H 6.91.

[IR]-1-(3,4,6-Tri-O-benzyl- β -D-gluco-hexopyranosyl)-1-propanol (31_S) and its [1S] isomer (31_A)

The procedure described for the preparation of 30 with 25 (120 mg, 0.16 mmol) and propionaldehyde (39 μ L, 3 equiv.) provided, after column chromatography (6:1 \rightarrow 1:1, CH₂Cl₂:AcOEt), in the elution order stannane 25 (12 mg, 10 %), 28 (16 mg, 22 %), 31_A (19.5 mg, 24 %) and 31_S (22.5 mg, 27 %).

31_A: $[\alpha]_D^{20} + 22 \circ (c \ 2.10, \text{CHCl}_3) \text{ mp: } 105 \, ^{\circ}\text{C}; \text{ lit.}^{26}, \text{mp: } 106 \, ^{\circ}\text{C}, \ [\alpha]_D^{20} + 23.6 \, ^{\circ} (c \ 1, \text{CHCl}_3). \, ^{1}\text{H} \text{ NMR} (\text{CDCl}_3): } \delta \ 0.99 \, (t, 3\text{H}, J = 7.5 \, \text{Hz}, \text{CH}_3), \, 1.53 \, \text{and } 1.77 \, (2 \, \text{m}, 2\text{H}, \text{CH}_2), \, 1.60 \, (\text{bs}, 1\text{H}, \text{OH}), \, 2.87 \, (\text{bs}, 1\text{H}, \text{OH}), \, 3.16 \, (\text{dd}, 1\text{H}, J_{1,7} = 6.5, J_{1,2} = 9.2 \, \text{Hz}, \, \text{H-1}), \, 3.43 \, (\text{dt}, 1\text{H}, J_{5,6} \sim J_{5,6} \sim 3.3, \, J_{4,5} = 9.0 \, \text{Hz}, \, \text{H-5}), \, 3.53 \, (\text{dd}, 1\text{H}, J_{3,4} = 8.6 \, \text{Hz}, \, \text{H-4}), \, 3.60 \, (\text{t}, 1\text{H}, J_{2,3} = 8.6 \, \text{Hz}, \, \text{H-3}), \, 3.64 \, (\text{t}, 1\text{H}, \, \text{H-2}), \, 3.69 \, (\text{m}, \, 2\text{H}, \, \text{H-6,6}'), \, 3.735 \, (\text{ddd}, 1\text{H}, \, J_{7,CH_2} = 3.2 \, \text{and} \, 8.4 \, \text{Hz}, \, \text{H-7}). \, \text{Anal. calcd for } \text{C}_{30}\text{H}_{36}\text{O}_{6}: \, \text{C}_{3.14}, \, \text{H}_{7.37}. \, \text{Found:} \, \text{C}_{73.02}, \, \text{H}_{7.48}.$

31_S: $[\alpha]_D^{20} + 22 \circ (c \ 2.30, \text{ CHCl}_3)$. mp: 137 °C; lit.²⁶ mp: 139 °C, $[\alpha]_D^{20} + 35.4 \circ (c \ 0.5, \text{ CHCl}_3)$. ¹H NMR (CDCl₃): δ 0.98 (t, 3H, J = 7.5 Hz, CH₃), 1.62 (m, 2H, CH₂), 2.0 and 2.45 (2 bs, 2H, 2 OH), 3.16 (dd, 1H, $J_{1,7} = 1.9$, $J_{1,2} = 9.9$ Hz, H-1), 3.455 (dt, 1H, $J_{5,6} \sim J_{5,6'} \sim 3$ Hz, $J_{4,5} = 9.8$ Hz, H-5), 3.52 and 3.58 (2 t, 2H, $J \sim 9$ Hz, H-3,4), 3.70 (m, 2H, H-6,6'), 3.71 (m, 1H, H-7), 3.75 (bt, 1H, $J_{2,3} \sim 9$ Hz, H-2). Anal. calcd for C₃₀H₃₆O₆: C 73.14, H, 7.37. Found: C 73.30, H 7.45.

[IR]-I-(3,4,6-Tri-O-benzyl- β -D-gluco-hexopyranosyl)-2-methylpropan-I-ol (32_S) and its [IS] isomer (32_A)

The procedure described for the preparation of 30 with 25 (146 mg, 0.20 mmol) and iso-butyraldehyde (55 μ L, 3 equiv.) provided, after column chromatography (CH₂Cl₂ then 10:1 \rightarrow 1:1, CH₂Cl₂:AcOEt), in the elution order, stannane 25 (24 mg, 16 %), 32_A (21 mg,

21 %), the protonated product **28** (17 mg, 19 %) and 32_S (29 mg, 29 %).

32_A: $[\alpha]_D^{20}$ +17 ° (*c* 0.8, CHCl₃) mp: 96 °C. ¹H NMR (CDCl₃): δ 0.91 and 1.00 (2 d, 6H, J = 7.8 Hz, 2 CH₃), 2.03 and 2.68 (2 bs, 2H, 2 OH), 2.12 (m, 1H, $J_{CH,7}$ = 3.3 Hz, CHMe₂), 3.20 (dd, 1H, $J_{1,7}$ = 7.8, $J_{1,2}$ = 9.1 Hz, H-1), 3.42 (m, 1H, $J_{5,6}$ = 2.5, $J_{5,6}$ = 4.0, $J_{4,5}$ = 9.5 Hz, H-5), 3.56 and 3.62 (2 t, 2H, J ~ 9 Hz, H-3,4), 3.68 (dd, 1H, H-7), 3.69 (m, 2H, H-6,6'), 3.71 (t, 1H, H-2). Anal. calcd for C₃₁H₃₈O₆: C 73.49, H 7.56. Found: C 73.58, H 7.70.

32_S: $[\alpha]_D^{20}$ +18 ° (c 1.05, CHCl₃) mp: 153 °C. ¹H NMR (CDCl₃): δ 0.90 and 1.03 (2 d, 6 H, J = 7.5 Hz, 2 CH₃), 1.77 (bs, 1H, OH), 1.87 (m, 1H, CHMe₂), 2.62 (bs, 1H, OH), 3.29 (dd, 1H, $J_{1,7}$ = 1.5, $J_{1,2}$ = 9.5 Hz, H-1), 3.40 (d, 1H, $J_{7,CH}$ = 8.3 Hz, H-7), 3.45 (dt, 1H, $J_{5,6}$ = $J_{5,6}$ = 3.1, $J_{4,5}$ = 9.2 Hz, H-5), 3.44 and 3.60 (2 t, 2H, J ~ 9.0 Hz, H-3,4), 3.70 (m, 2H, H-6,6'), 3.78 (t, 1H, H-2). Anal. calcd for C₃₁H₃₈O₆: C 73.49, H 7.56. Found: C 73.69, H 7.64.

Preparation of the isopropylidene derivative 33

To a stirred solution of 31_S (25 mg, 0.05 mmol) in DMF (0.3 mL) and 2,2-dimethoxypropane (0.2 mL) was added p-toluene sulfonic acid (~1 mg). After 5 h at rt, the reaction mixture was neutralized with Et₃N and concentrated. Purification of the residue by column chromatography (10:1 \rightarrow 8:1, hexanes: AcOEt) provided 33 (18 mg, 65 %). lit.²⁶ [α]_D²⁰ +8.7 ° (c 1, CHCl₃). ¹H NMR (CDCl₃): δ 0.99 (t, 3H, J = 7.5 Hz, CH₃), 1.375 and 1.46 (2 s, 6H, CMe₂), 1.64 and 1.77 (2 m, 2H, J_{7,CH2} = 5.5 and 8.9 Hz, CH₂), 3.445 (dd, 1H, J_{1,7} = 7.0, J_{1,2} = 9.5 Hz, H-1), 3.455 (ddd, 1H, J_{5,6} = 2.6, J_{5,6} = 4.1, J_{4,5} = 9.8 Hz, H-5), 3.51–3.77 (m, 5 H, H-2,3,4,6,6'), 3.99 (ddd, 1H, H-7). Anal. calcd for C₃₃H₄₀O₆: C 74.41, H 7.57. Found: C 74.72, H 7.69.

Preparation of the isopropylidene derivative 34

Diol 31_A (25 mg, 0.05 mmol) treated as above provided, after column chromatography (10:1, hexanes:AcOEt), the isopropylidene derivative (23 mg, 85 %). Hydrogenolysis and acetylation under standard conditions (see preparation of 14) on the isopropylidene derivative (5 mg) furnished, after column chromatography (3:1, hexanes:AcOEt), 34 (3.5 mg, ~ quant.) mp: 117 °C. ¹H NMR (CDCl₃): δ 0.94 (t, 3H, J =7.5 Hz, CH₃), 1.38 and 1.46 (2 s, 6H, CMe₂), 1.80 (m, 2H, CH₂), 2.025, 2.045 and 2.08 (3 s, 9H, 3 Ac), 2.965 (t, 1H, $J_{1,2} = J_{1,7} = 9.5$ Hz), 3.66 (dd, 1H, $J_{7,CH_2} = 2.2$ and 5.0 Hz, H-7), 3.665 (m, 1H, $J_{5,6} = 2.3$, $J_{5,6} = 5.1$, $J_{4,5} = 9.5 \text{ Hz}, \text{ H-5}$, 3.70 (t, 1H, $J_{2,3} = 9.5 \text{ Hz}, \text{ H-2}$), 4.045 (dd, 1H, $J_{6,6'}$ = 12.5 Hz, H-6), 4.03 (dd, 1H, H-6'), 5.02 (t, 1H, $J_{3,4} = 9.5$ Hz), 5.12 (t, 1H, H-3). MS (d.c.i. mode using ammonia on a Ribermag R10-10 instrument) m/z: 406 (M + 18), 389 (M + 1).

Acknowledgment

The authors thank Professor Pierre Sinaÿ for his encouragement and support during this work.

References and Notes

- 1. For recent reviews see Postema, M. H. D. Tetrahedron 1992, 48, 8545; Herscovici, J.; Antonakis, K. In: Studies in Natural Products Chemistry Vol. 10, pp. 337–403, Atta-ur-Rahman, Ed.; Elsevier; Amsterdam, 1992.
- Sinnott, M. L.; Smith, P. J. J. Chem. Soc., Chem. Commun. 1976, 223; Tang, J.-C.; Tropp, B. E.; Engel, R. Tetrahedron Lett. 1978, 723; Norbeck, D. W.; Kramer, J. B.; Lartey, P. A. J. Org. Chem. 1987, 52, 2174; BeMiller, J. N.; Yadar, M. P.; Kalabokis, V. N.; Myers, R. W. Carbohydr. Res. 1990, 200, 111; Schmidt, R. R.; Dietrich, H. Angew. Chem. Int. Ed. Engl. 1991, 30, 1328.
- 3. Bertozzi, C. R.; Bednarski, M. D. Carbohydr. Res. 1992, 223, 243; Bertozzi, C. R.; Bednarski, M. D. J. Am. Chem. Soc. 1992, 114, 5543; Bertozzi, C. R.; Cook, D. G.; Kobertz, W. R.; Gonzalez-Scarano, F.; Bednarski, M. D. J. Am. Chem. Soc. 1992, 114, 10639, and references cited therein.
- 4. Lesimple, P.; Beau, J.-M.; Sinay, P. J. Chem. Soc., Chem. Commun. 1985, 894; Lesimple, P.; Beau, J.-M.; Sinay, P. Carbohydr. Res. 1987, 171, 289.
- (a) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481; (b) Still,
 W. C.; Sreekumar, C. J. Am. Chem. Soc. 1980, 102, 1201;
 (c) McGarvey, J.; Kimura, M. J. Org. Chem. 1982, 47, 5422.
- 6. Lancelin, J.-M.; Morin-Allory, L.; Sinaÿ, P. J. Chem. Soc., Chem. Commun. 1984, 355.
- 7. Hutchinson, D. K.; Fuchs, P. L. J. Am. Chem. Soc. 1987, 109, 4930.
- 8. (a) Prandi, J.; Beau, J.-M. Tetrahedron Lett. 1989, 30, 4517; (b) Prandi, J.; Audin, C.; Beau, J.-M. Tetrahedron Lett. 1991, 32, 769.
- 9. The syn:anti descriptors are those used by S. Masamune: Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R. Angew. Chem. Int. Ed. Engl. 1985, 24, 1.
- 10. Gensler, W. G.; Johnson, F. J.; Sloan, A. D. B. J. Am. Chem. Soc. 1960, 82, 6074.

- 11. Nakata, T.; Oishi, T. Tetrahedron Lett. 1980, 21, 1641; Nakata, T.; Tanaka, T.; Oishi, T. Tetrahedron Lett. 1981, 22, 4723.
- 12. Anisuzzaman, A. K. M.; Whistler, R. L. Carbohydr. Res. 1978, 61, 511.
- 13. Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990.
- 14. Garegg, J.; Samuelson, B. J. Chem. Soc., Chem. Commun. 1979, 978.
- 15. Rieke, R. D.; Uhm, S. J.; Hudnall, P. M. J. Chem. Soc., Chem. Commun. 1973, 269.
- 16. Bassindale, A. R.; Ellis, R. J.; Lau, J. C.-Y.; Taylor, P. G. J. Chem. Soc., Chem. Commun. 1986, 98.
- 17. Fernandez-Mayoralas, A.; Marra, A.; Trumtel, M.; Veyrières, A.; Sinaÿ, P. Carbohydr. Res. 1989, 188, 81.
- 18. Schmidt, R. R.; Kast, J. Tetrahedron Lett. 1986, 27, 4007.
- 19. Lesimple, P.; Beau, J.-M.; Jaurand, G.; Sinaÿ, P. Tetrahedron Lett. 1986, 27, 6201; Dubois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1990, 1191; Dubois, E.; Beau, J.-M. Tetrahedron Lett. 1990, 31, 5165.
- 20. Pedretti, V.; Veyrières, A.; Sinaÿ, P. Tetrahedron 1990, 46, 77.
- 21. (a) Paulsen, H.; Roden, K.; Sinnwell, V.; Koebernick, W. Angew. Chem. Int. Ed. Engl. 1976, 15, 439; (b) Barlenga, J.; Fanaras, F. J.; Villamana, J.; Yus, M. J. Org. Chem. 1982, 47, 1560; (c) Barlenga, J.; Florez, J.; Yus, M. J. Chem. Soc., Perkin Trans. 1 1983, 3019; (d) Najera, C.; Yus, M.; Seebach, D. Helv. Chim. Acta 1984, 67, 289; (e) Bartman, E. Angew. Chem. Int. Ed. Engl. 1986, 25, 653; (f) Cohen, T.; Jeong, I.-H., Mudryk, B.; Bhupathy, M.; Awad, M. M. A. J. Org. Chem. 1990, 55, 1528.
- 22. The same approach has recently been reported: Wittman, V.; Kessler, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 1091.
- 23. Yamaguchi, H.; Schuerch, C. Carbohydr. Res. 1960, 81, 192.
- 24. Lancelin, J.-M.; Paquet, F.; Beau, J.-M. Tetrahedron Lett. 1988, 29, 2827.
- 25. de Pouilly, P.; Chénedé, A.; Maliet, J.-M.; Sinaÿ, P. Bull. Soc. Chim. Fr. 1993, 130, 256.
- 26. Schmidt, R. R.; Preuss, R.; Betz, R. Tetrahedron Lett. 1987, 28, 6591; Preuss, R.; Schmidt, R. R. Liebigs. Ann. Chem. 1989, 429.

(Received in U.S.A. 11 March 1994; accepted 30 May 1994)